Iphone
shpora.me - незаменимый помощник для студентов и школьников, который позволяет быстро создавать и получать доступ к шпаргалкам или другим заметкам с любых устройств. В любое время. Абсолютно бесплатно. Зарегистрироватся | Войти

* данный блок не отображается зарегистрированым пользователям и на мобильных устройствах

Тригонометрические функции -admin

Тригонометрические функции — элементарные функции, которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости сторон этих треугольников от острых углов при гипотенузе (или, что равнозначно, зависимость хорд и высот от центрального угла в круге). Эти функции нашли широчайшее применение в самых разных областях науки. Впоследствии определение тригонометрических функций было расширено, их аргументом теперь может быть произвольное вещественное или даже комплексное число. Наука, изучающая свойства тригонометрических функций, называется тригонометрией.

К тригонометрическим функциям относятся:

прямые тригонометрические функции

  • синус (\sin x)
  • косинус (\cos x)

производные тригонометрические функции

  • тангенс (\mathrm{tg}\, x)
  • котангенс (\mathrm{ctg}\, x)

другие тригонометрические функции

  • секанс (\sec x)
  • косеканс (\mathrm{cosec}\, x)

В западной литературе тангенс, котангенс и косеканс часто обозначаются \tan x, \cot x, \csc x.

Кроме этих шести, существуют также некоторые редко используемые тригонометрические функции (версинус и т.д.), а также обратные тригонометрические функции (арксинус, арккосинус и т. д.), рассматриваемые в отдельных статьях.

Синус и косинус вещественного аргумента являются периодическими непрерывными и неограниченно дифференцируемыми вещественнозначными функциями. Остальные четыре функции на вещественной оси также вещественнозначные, периодические и неограниченно дифференцируемые на области определения, но не непрерывные. Тангенс и секанс имеют разрывы второго рода в точках \pm \pi n + \frac{\pi}{2}, а котангенс и косеканс — в точках \pm \pi n.

Значения синуса, косинуса, тангенса, котангенса, секанса и косеканса для некоторых углов приведены в таблице. («∞» означает, что функция в указанной точке не определена, а в её окрестности стремится к бесконечности).

\alpha\, \frac{2\pi}{3} = 120^\circ \frac{3\pi}{4} = 135^\circ \frac{5\pi}{6} = 150^\circ \frac{7\pi}{6} = 210^\circ \frac{5\pi}{4} = 225^\circ \frac{4\pi}{3} = 240^\circ \frac{5\pi}{3} = 300^\circ \frac{7\pi}{4} = 315^\circ \frac{11\pi}{6} = 330^\circ \sin \alpha\, \frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2} \frac{1}{2} -\frac{1}{2} -\frac{\sqrt{2}}{2} -\frac{\sqrt{3}}{2} -\frac{\sqrt{3}}{2} -\frac{\sqrt{2}}{2} -\frac{1}{2} \cos \alpha\, -\frac{1}{2} -\frac{\sqrt{2}}{2} -\frac{\sqrt{3}}{2} -\frac{\sqrt{3}}{2} -\frac{\sqrt{2}}{2} -\frac{1}{2} \frac{1}{2} \frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2} \operatorname{tg}\,\alpha -\sqrt{3} {-1}\,\! -\frac{\sqrt{3}}{3} \frac{\sqrt{3}}{3} {1}\,\! \sqrt{3} -\sqrt{3} {-1}\,\! -\frac{\sqrt{3}}{3} \operatorname{ctg}\,\alpha -\frac{\sqrt{3}}{3} {-1}\,\! -\sqrt{3} \sqrt{3} {1}\,\! \frac{\sqrt{3}}{3} -\frac{\sqrt{3}}{3} {-1}\,\! -\sqrt{3}

 

\alpha\, \frac{\pi}{12} = 15^\circ \frac{\pi}{10} = 18^\circ \frac{\pi}{8} = 22{{,}}5^\circ \frac{\pi}{5} = 36^\circ \frac{3\,\pi}{10} = 54^\circ \frac{3\,\pi}{8} = 67{{,}}5^\circ \frac{2\,\pi}{5} = 72^\circ \frac{5\,\pi}{12} = 75^\circ \sin \alpha\, \frac{\sqrt{3}-1}{2\,\sqrt{2}} \frac{\sqrt{5}-1}{4} \frac{\sqrt{2-\sqrt{2}}}{2} \frac{\sqrt{5-\sqrt{5}}}{2\,\sqrt{2}} \frac{\sqrt{5}+1}{4} \frac{\sqrt{2+\sqrt{2}}}{2} \frac{\sqrt{5+\sqrt{5}}}{2\,\sqrt{2}} \frac{\sqrt{3}+1}{2\,\sqrt{2}} \cos \alpha\, \frac{\sqrt{3}+1}{2\,\sqrt{2}} \frac{\sqrt{5+\sqrt{5}}}{2\,\sqrt{2}} \frac{\sqrt{2+\sqrt{2}}}{2} \frac{\sqrt{5}+1}{4} \frac{\sqrt{5-\sqrt{5}}}{2\,\sqrt{2}} \frac{\sqrt{2-\sqrt{2}}}{2} \frac{\sqrt{5}-1}{4} \frac{\sqrt{3}-1}{2\,\sqrt{2}} \operatorname{tg}\,\alpha 2-\sqrt{3} \sqrt{1-\frac{2}{\sqrt{5}}} \sqrt{2}-1 \sqrt{5-2\,\sqrt{5}} \sqrt{1+\frac{2}{\sqrt{5}}} \sqrt{2}+1 \sqrt{5+2\,\sqrt{5}} 2 + \sqrt{3} \operatorname{ctg}\,\alpha 2 + \sqrt{3} \sqrt{5+2\,\sqrt{5}} \sqrt{2}+1 \sqrt{1+\frac{2}{\sqrt{5}}} \sqrt{5-2\,\sqrt{5}} \sqrt{2}-1 \sqrt{1-\frac{2}{\sqrt{5}}} 2-\sqrt{3}
 

Идеология

1.Идеология как социальный феномен, её сущность. Содержание идеологииСоциально-исторической системой представлений о мире стала идеология как система рационально- логического обоснования поведения людей, их ценностей, норм взаимоотношений, целей и т.д. Идеология как явление во многом сходна с религией и с наукой. От науки она восприняла доказательность и логичность своих постулатов, но, в отличие от науки, идеология призвана давать оценку явлениям действительности (что хорошо, что...

Русский язык и культура речи

перейти к оглавлению

1. ЭЛЕМЕНТЫ И УРОВНИ ЯЗЫКА

Характеризуя язык как систему, необходимо определить, из каких элементов он состоит. В большинстве языков мира выделяются следующие единицы: фонема (звук), морфема, слово, словосочетание и предложение. Единицы языка неоднородны по своему строению: простые (фонемы) и сложные (словосочетания, предложения). При этом более сложные единицы всегда состоят из более простых.

Самая простая единица языка – это фонема, неделимая и сама по себе...

законы диалектики

Основные законы диалектики.

1)Закон единства и борьбы противоположностей.

Этот закон является «ядром» диалектики, т.к. определяет источник развития, отвечает на вопрос, почему оно происходит.

Содержание закона: источник движения и развития мира находится в нем самом, в порождаемых им противоречиях.

Противоречие – это взаимодействие противоположных сторон, свойств и тенденций в составе той или иной системы или между системами. Диалектическое противоречие есть только там, где...

Математические формулы. Шпаргалка для ЕГЭ с математики

Формулы сокращенного умножения

(а+b)2 = a2 + 2ab + b2

(а-b)2 = a2 – 2ab + b2

a2 – b2 = (a-b)(a+b)

a3 – b3 = (a-b)( a2 + ab + b2)

a3 + b3 = (a+b)( a2 – ab + b2)

(a + b)3 = a3 + 3a2b+ 3ab2+ b3

(a – b)3 = a3 – 3a2b+ 3ab2- b3

Свойства степеней

a0 = 1 (a≠0)

am/n = (a≥0, n ε N, m ε N)

a- r = 1/ a r (a>0, r ε Q)

m...

Политология. Универсальная шпаргалка

перейти к оглавлению

1. Место политологии среди гуманитарных наук

Политология развивается в тесном взаимодействии с другими гуманитарными науками. Их всех объединяет общий объект исследования — жизнь общества во всем многообразии ее конкретных проявлений.

Сегодня невозможно изучать сложные политические процессы, не учитывая взаимодействие общественных (гуманитарных) наук.

1) Политология тесно связана с экономикой. Экономика дает соответствующее обоснование реализации экономических...